Classification and Calculation of Retinal Blood vessels Parameters

Manjiri B. Patwari
Institute of Management Studies & Information Technology, Vivekanand College Campus, Aurangabad MS (India)
Manjiri.patwari@gmail.com

Ramesh R. Manza
Dept of CS and IT, Dr. B. A. M. University, Aurangabad MS (India)
manzaramesh@gmail.com

Yogesh M. Rajput
Dept of CS and IT, Dr. B. A. M. University, Aurangabad MS (India)
yogesh.rajput128@gmail.com

Deepali D. Rathod
Dept of CS and IT, Dr. B. A. M. University, Aurangabad MS (India)
rathoddeepali2@gmail.com

Manoj Saswade
Director, Saswade Eye Clinic"
nehad35@gmail.com

Neha Deshpande
Director, Guruprasad Netra Rugnalaya pvt. ltd, Aurangabad MS (India)
prachims@yahoo.com

Abstract -
In this paper, we present an algorithm for the classification and calculation of retinal blood vessels parameters. Six parameters including Area, Length, thickness, Diameter, Mean Diameter and Tortuosity are calculated. The algorithm proceeds through three main steps. 1. preprocessing operations on high resolution fundus images 2. For retinal vessel extraction, simple vessel segmentation techniques formulated in the language of 2D Median Filter 3. Segmentation for finding boundaries of the extracted blood vessels. Performance of this algorithm is tested using the fundus image database (245 images) taken from Dr. Manoj Saswade, Dr. Neha Despande and online available databases diaretdb0, diaretdb1 and DRIVE. This algorithm achieves accuracy of 96% with 0.92 sensitivity and 0 specificity for Saswade database, for diaretdb0 accuracy 95% with 0.95 sensitivity and 0 specificity, for diaretdb1 accuracy 96% with 0.96 sensitivity and 0 specificity, and for DRIVE database 98% accuracy with 0.98 sensitivity and 0 specificity and also used statistical techniques for result analysis, in this techniques used Mean, Standard Deviation, Variance, Covariance, Coefficient etc.

Keywords - Blood Vessels, 2D Median Filter.

1. INTRODUCTION
Proposed algorithm shows classification and calculation of retinal blood vessels parameters. Six parameters including Area, Length, thickness, Diameter, Mean Diameter and Tortuosity are calculated. In this algorithm we have used the Image Processing techniques for extraction of the retinal blood vessels and then classification and calculations of retinal blood vessels parameters. Firstly we have performed the preprocessing operation on high resolution fundus images. We have used 2D median filter for highlighting the blood vessel. For extraction of the blood vessels we have performed threshold function. Segmentation for detecting boundaries. For observing the result we have taken the images and formed a database from Dr. Manoj Saswade and Dr. Neha Despande (245 images), images from online databases diaretdb0, diaretdb1 and DRIVE.

2. METHODOLOGY
Computer assisted diagnosis for various diseases are very common now a days and medical imaging is playing a vital role in such diagnosis. Image processing techniques can help in extractions of blood vessels and bifurcation points. The proposed algorithm has 3 stages, shown in the figure 1. In first stage preprocessing is done to remove the background noise from input fundus image. Blood vessels are highlighted and extracted in the second stage and in the third stage using segmentation technique boundaries are detected.

2.1 PREPROCESSING
The Preprocessing is done to remove noise from the background and to enhance the image. We have taken out green channel, because green channel shows high intensity as compare to red and blue. shown in figure 2.
Mathematical formula for finding green channel is as follows

\[g = \frac{G}{R + G + B} \] \hspace{1cm} (1)

Here \(g \) is a Green channel and \(R, G \) and \(B \) are Red, Green and Blue respectively.

2.2 BLOOD VESSELS

2.2.1 BLOOD VESSELS ENHANCEMENT

Then we have use the complement function for enhancing the blood vessels on the retina.

\[A^c = \{ \omega | \omega \notin A \} \] \hspace{1cm} (2)

Here \(A^c \) is a complement, \(\omega \) is the element of \(A \), \(\notin \) stands for not an element of \(A \) and \(A \) is a set.

Then we have use Histogram equalization function for enhancing the complementary image.

\[h(v) = \text{round} \left(\frac{\text{cdf}(v) - \text{cdf}_{min}}{(M \times N) - \text{cdf}_{min}} \times (L - 1) \right) \] \hspace{1cm} (3)

Here \(\text{cdf}_{min} \) is the minimum value of the cumulative distribution function, \(M \times N \) gives the image's number of pixels and \(L \) is the number of grey levels.

As shown in the figure 3, we have use the Morphological structuring element for highlighting the blood vessels of the retina.

2.2.2 BLOOD VESSELS EXTRACTION

\[I_{\text{dilated}}(i,j) = \max_{(n,m)=\text{true}} I(i+n,j+m) \] \hspace{1cm} (4)

\[I_{\text{eroded}}(i,j) = \min_{(n,m)=\text{true}} I(i+n,j+m) \] \hspace{1cm} (5)

Figure 2: Flow for Classification and Calculation of Retinal Blood vessels Parameters

Figure 3: Fundus image and Blood vessels Enhanced images
We have used the Morphological open function for thickening the retinal blood vessels.

\[A \circ B = (A \ominus B) \oplus B \]

Here \(A \circ B \) is morphological opening, \(\ominus \) is Erosion and \(\oplus \) is Dilation.

We have used 2D median filter for highlighting and removing noise from the Morphological open function.

\[y[m, n] = \text{median}(x[i, j], (i, j) \in \omega) \]

Here \(\omega \) represents a neighborhood centered around location \((m, n)\) in the image.

Then we have used the Threshold function for extracting the retinal blood vessels, result images are shown in the figure 4.

\[c(\bar{x}) = \arg \max_k \left[\frac{\pi_k g(\bar{F}(\bar{x})|\bar{m}_k,\Sigma_k)}{p(\bar{F}(\bar{x})|\bar{M})} \right] \]

\[\text{Color Fundus Images} \quad \text{Using Segmentation Boundary Detection} \]

![Figure 4: Fundus images and Images obtained using Threshold to Extract Blood Vessels](image)

2.3 DETECTION OF BOUNDARIES USING SEGMENTATION

The segment label \(c(\bar{x}) = k \) for a pixel \(\bar{x} \) is the \(k \) which maximizes the ownership of \(\bar{F}(\bar{x}) \) in the MoG model \(M \). That is,

\[\text{Sensitivity} = \frac{TP}{TP + FN} \]

\[\text{Specificity} = \frac{TN}{TN + FN} \]
Table 1: Shows Sensitivity, Specificity and Accuracy

<table>
<thead>
<tr>
<th>No.</th>
<th>Database</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>ROC</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Saswade</td>
<td>0.92</td>
<td>0</td>
<td>0.9202</td>
<td>96%</td>
</tr>
<tr>
<td>2</td>
<td>Diaretdb0</td>
<td>0.95</td>
<td>0</td>
<td>0.9514</td>
<td>95%</td>
</tr>
<tr>
<td>3</td>
<td>Diaretdb1</td>
<td>0.96</td>
<td>0</td>
<td>0.9665</td>
<td>96%</td>
</tr>
<tr>
<td>4</td>
<td>DRIVE</td>
<td>0.98</td>
<td>0</td>
<td>0.9802</td>
<td>98%</td>
</tr>
</tbody>
</table>

Mean (X) = \(\frac{584.0626}{204} = 2.8 \)

Mean (Y) = \(\frac{581.9304}{204} = 2.848039216 \)

Variance

\[
\text{Variance} = \frac{\sum(x - \bar{X})^2}{N} \quad (12)
\]

\[
\text{Variance} = \frac{0.0626}{204} = 3.0867
\]

\[
\text{Variance} = \frac{0.9304}{204} = 0.0046
\]

Standard Deviation

\[
\text{Standard Deviation} = \sqrt{\text{Variance}(x)} \quad (13)
\]

\[
\text{Standard Deviation (x):} \quad \sqrt{3.0867} = 1.75
\]

\[
\text{Standard Deviation (y):} \quad \sqrt{0.0046} = 0.067
\]

Correlation

\[
s = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{X})(y_i - \bar{Y}) \quad (14)
\]

\[
S = \frac{1}{204} (0.0626)(0.9304)
\]

\[
S = \frac{1}{204} (0.058)
\]

\[
s = 2.855050
\]

Pearsons coefficient of correlation

\[
r_{xy} = \frac{\sum xy}{N\sigma_x\sigma_y} \quad (15)
\]

Where,

\[
x_y = 2759.9579 \quad N = 204,
\]

\[
\sigma_x = 1.75 \quad \sigma_y = 0.067
\]

\[
r_{xy} = \frac{2759.9579}{204 \times 1.75 \times 0.067} = \frac{2759.9579}{23.919} = 115.38
\]

Product moment correlation coefficient

\[
N = 204 \quad \sum y = 581.93
\]

\[
\sum x = 584.06 \quad \sum y^2 = 338642.52
\]

\[
\sum x^2 = 341126.08 \quad \sum xy = 2759.95
\]
\[S_{xy} = \sum xy - (\sum x \sum y \div N) \]
\[= 2759.95 - (584.06 \times 581.93 \div 204) \]
\[= 2759.95 - (1666.08) \]
\[= 1093.87 \]

\[S_{xx} = \sum xx - (\sum x \sum x \div N) \]
\[= 2766.55 - (584.06 \times 584.06 \div 204) \]
\[= 2766.55 - (341126.08 \div 204) \]
\[= 2766.55 - (1672.18) \]
\[= 1094.37 \]

\[S_{yy} = \sum yy - (\sum y \sum y \div N) \]
\[= 2756.98 - (581.93 \times 581.93 \div 204) \]
\[= 2756.98 - (338642.52 \div 204) \]
\[= 2756.98 - (1660.01) \]
\[= 1096.97 \]

\[r = \frac{S_{xy}}{\sqrt{S_{xx} S_{yy}}} = \frac{1093.87}{\sqrt{1094.37 \times 1096.97}} \]
\[= \frac{1093.87}{1095.66} \]
\[= 0.99 \]
\[= 1 \]

Therefore, the Product moment correlation coefficient has the strong positive correlation. Hence it is prove that the proposed algorithm works well. Following figures 11 and 12 shows the normalization graph over the ground truth and proposed algorithm for blood vessels parameters. In this graph near about all values are same which proves that the proposed system for extraction of retinal blood vessels parameter achieves good results.

4. CONCLUSION

In this algorithm we have used Image processing techniques for extracting the blood vessels of the retina and detecting the bifurcation points of the extracted blood vessels. For performing these techniques we have used database from Dr. Manoj Saswade, Dr. Neha Deshpande and online available databases diaretdb0, diaretdb1 and DRIVE. This algorithm for Saswade database achieves accuracy of 96% with 0.92 sensitivity and 0 specificity, for diaretdb0 accuracy 95% sensitivity and specificity 0, accuracy 96% with 0.96 sensitivity and specificity 0 for diaretdb1 and for DRIVE 98% with 0.98 sensitivity and specificity 0 respectively and also used statistical techniques.

5. ACKNOWLEDGMENTS

We are thankful to University Grant Commission (UGC) for providing us a financial support for the Major Research Project entitled “Development of Color Image Segmentation and Filtering Techniques for Early Detection of Diabetic Retinopathy” F. No.: 41 – 651/2012 (SR) also we are thankful to DST for providing us a financial support for the major research project entitled “Development of multi resolution analysis techniques for early detection of non-proliferative diabetic retinopathy without using angiography” F.No. SERB/F/2294/2013-14. We are thankful to Dr. Manoj Saswade, Director “Saswade Eye Clinic” Aurangabad and Dr. Neha Deshpande,
6. REFERENCES

Figure 6: GUI for Classification and Calculation of Retinal Blood vessels Parameters