Personal Identification algorithm based on Retinal Blood Vessels Bifurcation

Manjiri B. Patwari
Institute of Management Studies & Information Technology, Vivekanand College Campus, Aurangabad MS (India)
manjiri.patwari@gmail.com

Ramesh R. Manza
Dept of CS and IT, Dr. B. A. M. University, Aurangabad MS (India)
manzaramesh@gmail.com

Yogesh M. Rajput
Dept of CS and IT, Dr. B. A. M. University, Aurangabad MS (India)
yogesh.rajput128@gmail.com

Manoj Saswade
Director, Saswade Eye Clinic, Aurangabad MS (India)

Neha Deshpande
Director, Guruprasad Netra Rugnalaya Pvt. Ltd, Aurangabad MS (India)

Abstract

Biometric identifiers are the unique, measurable characteristics used to tag and describe individuals. Physiological characteristics are related to the shape of the body. Examples of biometric identifications are, fingerprint, face, DNA, Palm print, hand geometry, iris recognition, and retina. Human retina is another source of biometric system which provides the most reliable and stable means of authentication. We propose a new algorithm for the detection and measurement of blood vessels of the retina and finding the bifurcation points of blood vessels for personal identification. A minutiae technique for finding bifurcation points of the extracted blood vessels and according to bifurcation points identifies the individual person. Performance of these techniques is tested using the database from Dr. Manoj Saswade and Dr. Neha Deshpande, in this database total three hundred high resolution fundus images.

2. Methodology

Consider figure 1, it shows the flow of proposed algorithm for extraction of retinal blood vessels from high resolution fundus image. Initially preprocessing is done on the captured high resolution fundus image. Green channel is separated from rgb image. Histogram equalization for enhancement of image is done, then intensity transformation function for image contrast adjustment is carried out. Complement function is used for enhancement of intensity transformation image. After enhancement of blood vessels threshold function is performed for extraction of retinal blood vessels. Morphological Skeletonozation is done for calculating the centerline of blood vessels and minutiae technique is used for labeling the bifurcation points. A database formed after collecting the image from Dr. Manoj Saswade and Dr. Neha Deshpande. This database has total 300 fundus images. Through the system bifurcation points for all 300 images are calculated and stored in one dataset. Whenever an image is entered, its bifurcation points are calculated and they are matched with the bifurcation points available in the dataset. If match is found then for the system, person is authenticated otherwise not.

2.1 Preprocessing

The Preprocessing is done to remove noise (pixel whose color is distorted) from background and to enhance the image. In the first stage of preprocessing green channel is taken out, close to the lens of camera and should remain still during scanning procedure. Once the scanner is activated, the green light moves in a complete circle and captures the fundus region containing blood vessels[3]. Proposed algorithm shows the blood vessels extraction and detection of the bifurcation points of the vessels to identify the person. For observing the result we have taken the database form Dr. Manoj Saswade and Dr. Neha Deshpande, this database total three hundred high resolution fundus images.
Mathematical formula for finding green channel is as follows:

\[g = \frac{G}{R + G + B} \]

(1)

Here \(g \) is a Green channel and \(R \), \(G \) and \(B \) are Red, Green and Blue respectively.

2.2 Blood Vessels Extraction

Use the complement function for enhancing the blood vessels of the retina. Following formula is the mathematical representation of Complement function.

\[A^c = \{ \omega \mid \omega \notin A \} \]

(2)

Here \(A^c \) is a complement, \(\omega \) is the element of \(A \), \(\notin \) stands for not an element of \(A \) and \(A \) is set.

Then use Histogram equalization function for enhancing the complementary image to adjustment of contrast for better quality of an image. Histogram equalization is very important method for enhancement, the following mathematical equation elaborate the histogram equalization

\[h(v) = \text{round} \left(\frac{\text{cdf}(v) - \text{cdf}_{\text{min}}}{(M \times N) - \text{cdf}_{\text{min}}} \times (L - 1) \right) \]

(3)

Here \(\text{cdf}_{\text{min}} \) is the minimum value of the cumulative distribution function, \(M \times N \) gives the image's number of pixels and \(L \) is the number of grey levels.

After enhancement, use the Morphological structuring element for enhancing the blood vessels of the retina. The following mathematical formula shows the dilation and erosion function.

\[I_{\text{dilated}}(i, j) = \max_{(i,n,m)=\text{true}} I(i + n, j + m) \]

(4)

\[I_{\text{eroded}}(i, j) = \min_{(i,n,m)=\text{true}} I(i + n, j + m) \]

(5)

Perform erosion and dilation for joining the corrupted blood vessels.

2.3 Detection of Bifurcation Point

Then use the Morphological open function for thickening the retinal blood vessels. The following mathematical formula shows the Morphological open function.

\[A \circ B = (A \ominus B) \oplus B \]

(6)

Here \(A \circ B \) is morphological opening, \(\ominus \) is Erosion and \(\oplus \) is Dilation.

Then use 2D median filter for highlighting and removing noise from the Morphological open function. The following mathematical formula shows the 2D Median Filter

\[y[m, n] = \text{median}\{x[i, j], (i, j) \in \omega \} \]

(7)

Here \(\omega \) Represents a neighborhood centered around location \((m,n)\) in the image.
Then use the Threshold function for extracting the retinal blood vessels.

2.4 Centerline Bifurcation Point

\[T = \frac{1}{2}(m1 + m2) \]

(8)

Here m1 & m2 are the Intensity Values.

After threshold function we get blood vessels then perform morphological skeletonization function for calculating the centerline of extracted blood vessels.

Then used Minutiae Techniques for finding the bifurcation points of the extracted centerline of blood vessels of the retina

\[D_0(p) = \{(\beta_{l,k}, \omega_{l,k})\}_{k=0}^{K-1} \}_{l=0}^{L-1} \]

(9)

Table 1: Bifurcation points manually and by algorithm

<table>
<thead>
<tr>
<th>Sr No</th>
<th>Name of High Resolution Fundus Image</th>
<th>Bifurcation Ground Truth</th>
<th>Bifurcation by proposed algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>605</td>
<td>605</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>944</td>
<td>944</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>304</td>
<td>304</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>649</td>
<td>649</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1431</td>
<td>1431</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>675</td>
<td>675</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>147</td>
<td>147</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>306</td>
<td>306</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>616</td>
<td>616</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>187</td>
<td>187</td>
</tr>
<tr>
<td>12</td>
<td>19</td>
<td>405</td>
<td>405</td>
</tr>
<tr>
<td>13</td>
<td>21</td>
<td>930</td>
<td>930</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>203</td>
<td>203</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>421</td>
<td>421</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>903</td>
<td>903</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>415</td>
<td>415</td>
</tr>
<tr>
<td>18</td>
<td>9</td>
<td>605</td>
<td>605</td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td>944</td>
<td>944</td>
</tr>
<tr>
<td>20</td>
<td>27</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>21</td>
<td>29</td>
<td>187</td>
<td>187</td>
</tr>
<tr>
<td>22</td>
<td>31</td>
<td>405</td>
<td>405</td>
</tr>
<tr>
<td>23</td>
<td>33</td>
<td>930</td>
<td>930</td>
</tr>
<tr>
<td>24</td>
<td>35</td>
<td>203</td>
<td>203</td>
</tr>
<tr>
<td>25</td>
<td>37</td>
<td>421</td>
<td>421</td>
</tr>
</tbody>
</table>

Perform Statistical Techniques for result analysis
• Calculate Mean

\[\text{Mean (X)} = \frac{\sum\text{X}}{N} = \frac{113843.2}{204} = 558.0549 \]

\[\text{Mean (Y)} = \frac{\sum\text{Y}}{N} = \frac{113843.2}{204} = 558.0549 \]

• Calculate Variance

\[\text{Variance (x)} = \frac{\sum(x - \bar{x})^2}{N} = \frac{113259.236}{204} = 555.192334 \]

\[\text{Variance (y)} = \frac{\sum(y - \bar{y})^2}{N} = \frac{113259.236}{204} = 555.20701 \]

• Calculate Standard Deviation

\[\sqrt{\text{Variance (x)}} = \sqrt{555.192334} = 23.5625 \]

\[\sqrt{\text{Variance (y)}} = \sqrt{555.20701} = 23.5629 \]

• Calculate Correlation

\[s = \frac{1}{N-1} \sum_{i=1}^{n} \left(x_i - \bar{x} \right) \left(y_i - \bar{y} \right) \]

\[S = \frac{1}{203} (113259.236)(113259.236) \]

\[S = \frac{1}{203} (226518.472) \]

\[s = 1110.38467 \]

• Calculate Coefficient

Pearsons Coefficient of Correlation:

\[r_{xy} = \frac{\sum xy}{N \sigma_x \sigma_y} \]

Where,

\[xy = 86116547.99 \quad N = 204 \]

\[\sigma_x = 23.5625 \quad \sigma_y = 23.5629 \]

\[r_{xy} = \frac{86116547.99}{204 \times 23.5625 \times 23.5629} = \frac{86116547.99}{23.919} = 9613.5 \]

• Calculate correlation coefficient

Product moment correlation coefficient:

\[N = 204 \quad \sum y = 113843.2 \]

\[\sum x = 113843.2 \quad \sum y^2 = 227686.4 \]

\[\sum x^2 = 227686.4 \quad \sum xy = 86116547.99 \]

\[S_{xy} = \sum xy - (\sum x \sum y / N) \]

\[= 86116547.9 - \left(\frac{113843.2 \times 113843.2}{204} \right) \]

\[= 86116547.99 - (1116.11) \]

\[= 86115431.88 \]

\[S_{xx} = \sum xx - (\sum x \sum x / N) \]

\[= 227686.4 - \left(\frac{113843.2 \times 113843.2}{204} \right) \]

\[= 227686.4 - (1116.11) \]

\[= 226570.29 \]

\[S_{yy} = \sum yy - (\sum y \sum y / N) \]

\[= 227686.4 - \left(\frac{113843.2 \times 113843.2}{204} \right) \]

\[= 227686.4 - (1116.11) \]

\[= 226570.29 \]

\[r = \frac{S_{xy}}{\sqrt{S_{xx} S_{yy}}} = \frac{86115431.88}{\sqrt{226570.29 \times 226570.29}} \]

\[= \frac{1093.87}{673.16} = 1.63 \]

According to Product moment correlation coefficient shows the strong positive correlation. Hence it is clear that ground truth bifurcation are equal to proposed algorithm bifurcation. After calculating these techniques, perform normalization curve on the basis of Z Score of ground truth and verses algorithm bifurcation to see whether both bifurcations are same or not.

![Blood Vessels Bifurcation Ground Truth and proposed algorithm](image)
4. Conclusion

In this paper a biometric algorithm is presented for personal recognition based on retinal blood vessel bifurcation point of human retina. This algorithm has three stages consisting of preprocessing, Vessels extraction and matching according to bifurcation point. The first stage pre-processes the image. The second stage enhanced the blood vessels and segmented it using 2-d median filter. In the third stage minutiae technique is used for finding bifurcation point. In order to use vascular pattern for matching, the proposed system used bifurcations points as feature points. For performing these techniques we have used database from Dr. Manoj Saswade and Dr. Neha Deshpande. This algorithm achieves a true positive rate of 90%, false positive rate of 0%, and accuracy score of 0.9902.

5. Acknowledgments

We are thankful to University Grant Commission (UGC) for providing us a financial support for the Major Research Project entitled “Development of Color Image Segmentation and Filtering Techniques for Early Diagnosis of Diabetic Retinopathy” F. No.: 41 – 651/2012 (SR) also we are thankful to DST for providing us a financial support for the major research project entitled “Development of multi resolution analysis techniques for early detection of non-proliferative diabetic retinopathy without using angiography” F.No. SERB/F/2294/2013-14. We are thankful to Dr. Manoj Saswade, Director “Saswade Eye Clinic” Aurangabad and Dr. Neha Deshpande, Director “Guruprasad Netra Rungnalaya Pvt. Ltd”, Samarth Nagar, Aurangabad for providing the Database and accessing the Result. And special thanks to SAP DSR Phase-I of Dept of Computer Science & IT, Dr. Babasaheb Ambedkar Marathwada University Aurangabad.

6. References

